Holiday Homework
 Class: XII-A
 Subject: Physics

1. Revise the topics taught of first two units.

2 Do the Worksheet given in Homework Notebook.
3. Do all the derivations of first three chapters.

WORK SHEET I

SUB.JECT: PHYSICS

CLASS - XII

LESSON-ELECTROSTATICS

Q1. Two point charges q_{1} and q_{2} are placed close to each other. What is the nature of the force between them when: (i) $q_{1} q_{2}<0$ and (ii) $q_{1} q_{2}>0$?

Q2. Name the quantity with unit J/C. Is it a scalar or vector quantity?

Q3. An electric dipole of dipole moment $2 \times 10^{-6} \mathrm{C} \mathrm{m}$ is enclosed by a closed surface. What is the flux passing out of the surface?

Q4. What is the angle between the directions of electric field at any (i) axial point and (ii) equatorial point due to an electric dipole?

Q5. Two point charges placed at a distance r in air exert a force F on each other. At what distance will these charges experience the same force F in a medium of dielectric constant K ?

Q6. Consider a dipole of length $2 a$. What is the magnitude and direction of electric field at the midpoint of the length of the dipole 2

Q7. Two charges $+10 \mu \mathrm{C}$ and $-20 \mu \mathrm{C}$ are placed 15 cm apart. At what point on the line joining the two charges is the electric potential zero?

Q8. The following data was obtained for the dependence of the magnitude of electric field, with distance, from a reference point 0 , within the charge distribution in the shaded region.

Field points	A	B	$\mathrm{~A}^{\prime}$	B
Magnitude of field	E	E 8	$\mathrm{E}: 2$	E 16

(i) Identify the charge distribution and justify your answer.
(ii) If the potential due to this charge distribution has a value V at the point A, what is its value at the point B and C.

WORK SHEET II

SUBJECT: PHYSICS

Q1. The graph shown here, shows the variation of the total energy I stored in a capacitor against the value of the capacitancel itself. Which of the two - the charge on the capacitor or the potential used to charge it is kept constant for this graph?

Q2. In which orientation a dipole placed in uniform electric field is in (i) stable (ii) unstable equilibrium?
1
Q3. The electric potential as a function of distance x is shown in Fig. Construct a graph of the electric field strength E.

Q4. The two graphs drawn below, show the variation of electrostatic potential (V) with I being distance of point from the point charge for two point charges Q_{1} and Q_{2}
(iii) What are the signs of the two charges?
(ii) Which of the two charges has a larger magnitude?

Q5. A hollow metal sphere of radius 5 cm is charged such that the potential on its surface is 10 V . What is the potential at the centre of sphere.

Q6. Define electric potential. Derive an expression for the electric potential at a distance r from a point charge q.

Q7. Why two equipotential do not cross each. Draw equipotential surface for electric field which is decreasing along X-axis.

A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density
$8.0 \times 10^{7} \mathrm{C} / \mathrm{m}^{2}$. Find the charge on the sphere. What is the total flux leaving the surface?

WORKSHEET 3

1. I proton in placed is a uniform clectric fich directed along the positive X-axis. In which direction will it tend to mone?
2. What is the celectric potential due to an electric dipole at an equatorial point?

It the radius of the Gaussian surface enclosing a charge is halved, how does the electric flux through the Liaussian surface change?

- Cantho equipotential surfaces intersect each other? Justify your answer.

5. A metal plate is introduced between the plates of a charged parallel plate capacitor. What is its effect on the capacitance of the capacitor?
(7. Calculate the amount of work done in turning an electric dipole of dipole moment $3-10^{-8} \mathrm{C}-\mathrm{m}$ from its position of unstable equilibrium to the position of stable equilibrium in a uniform electric field of intensely $10^{3} \mathrm{NC}^{-1}$.
The sum of two point charges in 7 Nc they repel each other with a force of 1 N when kept 30 cm apart in free space. Calculate the value of each charge.
6. Two point charges $q_{1}=10 \times 10^{-8} \mathrm{C}$ and $q_{2}=-2 \times 10^{-8} \mathrm{C}$ are separated by a distance of 10 cm i. air
(iv) What is distance from charge q_{1} would the electric potential be zero?
(ii) Also, calculate the electric potential energy of the system.
7. State Gauss's law in electrostatics. Use this law derive an expression for the electric field due to long straight wire of linear charge density λ C-m.
8. State the principle of the device that can build-up high voltages of the order of a few million volts Draw its labeled diagram. A stage reaches in this device when the potential at the outer sphere canno be increased further by piling up more charge on it. Explain why?
9. A parallel plate capacitor is changed by a battery. After some-times, the battery is disconnected and dielectric slab of dielectric constant K is inserted between the plates. How would
(v) the capacitances
(ii) the electric field between plates
(vi) the energy stored in the capacitor, be affected?

Justify your answer.
12. (i)Define electric flux. Write its SI units.
(vii) Using Gauss's law, prove that electric field at a point due to a uniformly charged infinit plane sheet is independent of the distance from it.
(iii)How is the field directed if
(a) the sheet is positively charged
(b) Negatively charged?

